Paper 2: Core Pure Mathematics 2 Mark Scheme

Question	Scheme	Marks	AOs
1(i)	$\alpha+\beta+\gamma=8, \quad \alpha \beta+\beta \gamma+\gamma \alpha=28, \quad \alpha \beta \gamma=32$	B1	3.1a
	$\frac{1}{\alpha}+\frac{1}{\beta}+\frac{1}{\gamma}=\frac{\beta \gamma+\alpha \gamma+\alpha \beta}{\alpha \beta \gamma}$	M 1	1.1b
	$=\frac{7}{8}$	A 1ft	1.1b
		(3)	
(ii)	$(\alpha+2)(\beta+2)(\gamma+2)=(\alpha \beta+2 \alpha+2 \beta+4)(\gamma+2)$	M 1	1.1b
	$=\alpha \beta \gamma+2(\alpha \beta+\alpha \gamma+\beta \gamma)+4(\alpha+\beta+\gamma)+8$	A1	1.1b
	$=32+2(28)+4(8)+8=128$	A 1	1.1b
		(3)	
	Alternative:		
	$(x-2)^{3}-8(x-2)^{2}+28(x-2)-32=0$	M 1	1.1b
	$=\ldots-8+\ldots-32+\ldots-56-32=-128$	A1	1.1b
	$\therefore(\alpha+2)(\beta+2)(\gamma+2)=128$	A1	1.1b
		(3)	
(iii)	$\alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\alpha \gamma+\beta \gamma)$	M 1	3.1a
	$=8^{2}-2(28)=8$	A 1ft	1.1b
		(2)	
(8 marks)			
Notes:			
(i) B1: Identifies the correct values for all 3 expressions (can score anywhere) M 1: U ses a correct identity Alft: Correct value (follow through their 8, 28 and 32)			
(ii) M 1: A ttempts to expand A1: Correct expansion A1: Correct value			
Alternative: M 1: Substitutes $\mathrm{x}-2$ for x in the given cubic A1: Calculates the correct constant term A1: Changes sign and so obtains the correct value			
(iii) M 1: Establishes the correct identity A1ft: Correct value (follow through their 8, 28 and 32)			

Question	Scheme	Marks	AOs
2(a)	$\left(\begin{array}{r}3 \\ -4 \\ 2\end{array}\right) \cdot\left(\begin{array}{c}6 \\ 2 \\ 12\end{array}\right)=18-8+24$	M 1	3.1a
	$d=\frac{18-8+24-5}{\sqrt{3^{2}+4^{2}+2^{2}}}$	M 1	1.1b
	$=\sqrt{29}$	A 1	1.1b
		(3)	
(b)	$\left(\begin{array}{r}-1 \\ -3 \\ 1\end{array}\right) \cdot\left(\begin{array}{l}2 \\ 1 \\ 5\end{array}\right)=\ldots \quad$ and $\quad\left(\begin{array}{r}-1 \\ -3 \\ 1\end{array}\right) \cdot\left(\begin{array}{r}1 \\ -1 \\ -2\end{array}\right)=\ldots$	M 1	2.1
	$\begin{aligned} \left(\begin{array}{r} -1 \\ -3 \\ 1 \end{array}\right) \cdot\left(\begin{array}{l} 2 \\ 1 \\ 5 \end{array}\right)=0 \text { and }\left(\begin{array}{r} -1 \\ -3 \\ 1 \end{array}\right) \cdot\left(\begin{array}{r} 1 \\ -1 \\ -2 \end{array}\right)=0 \\ \quad \therefore-\mathbf{i}-3 \mathbf{j}+\mathbf{k} \text { is perpendicular to } \Pi_{2} \end{aligned}$	A 1	2.2a
		(2)	
(c)	$\left(\begin{array}{r}-1 \\ -3 \\ 1\end{array}\right) \cdot\left(\begin{array}{r}3 \\ -4 \\ 2\end{array}\right)=-3+12+2$	M 1	1.1b
	$\begin{aligned} & \sqrt{(-1)^{2}+(-3)^{2}+1^{2}} \sqrt{(3)^{2}+(-4)^{2}+2^{2}} \cos \theta=11 \\ & \Rightarrow \cos \theta=\frac{11}{\sqrt{(-1)^{2}+(-3)^{2}+1^{2}} \sqrt{(3)^{2}+(-4)^{2}+2^{2}}} \end{aligned}$	M 1	2.1
	So angle between planes $\theta=52^{\circ} *$	A 1*	2.4
		(3)	
(8 marks)			
Notes:			
(a) M 1: Realises the need to and so attempts the scalar product between the normal and the position vector M 1: Correct method for the perpendicular distance A1: Correct distance			
(b) M 1: Recognises the need to calculate the scalar product betw een the given vector and both direction vectors A1: Obtains zero both times and makes a conclusion			
(c) M 1: Calculates the scalar product between the two normal vectors M 1: A pplies the scalar product formula with their 11 to find a value for $\cos \theta$ A1*: Identifies the correct angle by linking the angle between the normal and the angle between the planes			

Question	Scheme	Marks	AOs
3(i)(a)	$\|\mathbf{M}\|=2(1+2)-\mathrm{a}(-1-1)+4(2-1)=0 \Rightarrow a=\ldots$	M 1	2.3
	The matrix \mathbf{M} has an inverse when $\mathrm{a} \neq-5$	A 1	1.1b
		(2)	
(b)	Minors: $\left(\begin{array}{crc}3 & -2 & 1 \\ -a-8 & 2 & a+4 \\ 4-a & -6 & -2-a\end{array}\right)$ Cofactors: $\left(\begin{array}{ccc}3 & 2 & 1 \\ a+8 & 2 & -a-4 \\ 4-a & 6 & -2-a\end{array}\right)$	B1	1.1b
	$\mathbf{M}^{-1}=\frac{1}{\|\mathbf{M}\|} \operatorname{adj}(\mathbf{M})$	M 1	1.1b
	$\mathbf{M}^{-1}=\frac{1}{2 a+10}\left(\begin{array}{ccc}3 & a+8 & 4-a \\ 2 & 2 & 6\end{array}\right)\left(\begin{array}{c}\text { 2 correct rows or } \\ \text { columns. Follow } \\ \text { through their detM }\end{array}\right.$	A 1ft	1.1b
	2a+10 $\left.\begin{array}{lll}1 & -a-4 & -2-a\end{array}\right) \quad \begin{aligned} & \text { All correct. Follow } \\ & \text { through their detM }\end{aligned}$	A 1ft	1.1b
		(4)	
(ii)	When $\mathrm{n}=1$, Ihs $=\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right), \quad$ rhs $=\left(\begin{array}{cc}3^{1} & 0 \\ 3\left(3^{1}-1\right) & 1\end{array}\right)=\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)$ So the statement is true for $n=1$	B1	2.2a
	A ssume true for $n=k$ so $\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}3^{k} & 0 \\ 3\left(3^{k}-1\right) & 1\end{array}\right)$	M 1	2.4
	$\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)^{k+1}=\left(\begin{array}{cc}3^{k} & 0 \\ 3\left(3^{k}-1\right) & 1\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)$	M 1	2.1
	$=\left(\begin{array}{cc}3 \times 3^{k} & 0 \\ 3 \times 3\left(3^{k}-1\right)+6 & 1\end{array}\right)$	A 1	1.1b
	$=\left(\begin{array}{cc}3^{k+1} & 0 \\ 3\left(3^{k+1}-1\right) & 1\end{array}\right)$	A 1	1.1b
	If the statement is true for $n=k$ then it has been shown true for $n=k+1$ and as it is true for $n=1$, the statement is true for all positive integers n	A 1	2.4
		(6)	
(12 marks)			

Question 3 notes:

(i)(a)

M 1: A ttempts determinant, equates to zero and attempts to solve for a in order to establish the restriction for a
A1: Provides the correct condition for a if \mathbf{M} has an inverse
(i)(b)

B1: A correct matrix of minors or cofactors
M 1: For a complete method for the inverse
Alft: Two correct rows following through their determinant
Alft: Fully correct inverse following through their determinant
(ii)

B1: Shows the statement is true for $\mathrm{n}=1$
M 1: A ssumes the statement is true for $n=k$
M 1: A ttempts to multiply the correct matrices
A1: Correct matrix in terms of k
A1: Correct matrix in terms of $k+1$
A1: Correct complete conclusion

Question	Scheme	Marks	AOs
5(a)	$\frac{d y}{d x}=\sin x \cosh x+\cos x \sinh x$	M 1	1.1a
	$\begin{gathered} \frac{d^{2} y}{d x^{2}}=\cos x \cosh x+\sin x \sinh x+\cos x \cosh x-\sin x \sinh x \\ (=2 \cos x \cosh x) \end{gathered}$	M 1	1.1b
	$\frac{d^{3} y}{d x^{3}}=2 \cos x \sinh x-2 \sin x \cosh x$	M 1	1.1b
	$\frac{d^{4} y}{d x^{4}}=-4 \sinh x \sin x=-4 y *$	A 1*	2.1
		(4)	
(b)	$\left(\frac{d^{2} y}{d x^{2}}\right)_{0}=2,\left(\frac{d^{6} y}{d x^{6}}\right)_{0}=-8,\left(\frac{d^{10} y}{d x^{10}}\right)_{0}=32$	B1	3.1a
	U ses $y=y_{0}+x y_{0}^{\prime}+\frac{x^{2}}{2!} y_{0}^{\prime \prime}+\frac{x^{3}}{3!} y_{0}^{\prime \prime \prime}+\ldots$ with their values	M 1	1.1b
	$=\frac{x^{2}}{2!}(2)+\frac{x^{6}}{6!}(-8)+\frac{x^{10}}{10!}(32)$	A 1	1.1b
	$=x^{2}-\frac{x^{6}}{90}+\frac{x^{10}}{113400}$	A 1	1.1b
		(4)	
(c)	$2(-4)^{n-1} \frac{x^{4 n-2}}{(4 n-2)!}$	M1A1	$\begin{aligned} & \text { 3.1a } \\ & \text { 2.2a } \end{aligned}$
		(2)	
(10 marks)			
Notes:			
(a)			
M 1: Realises the need to use a second application of the product rule and attempts the second derivative			
M 1: Correct method for the third derivative			
(b)			
B1: $\quad M$ akes the connection with part (a) to establish the general pattern of derivatives and finds the correct non-zero values			
M 1: Correct attempt at M aclaurin series with their values			
A1: Correct expression un-simplified			
A1: Correct expression and simplified			
M 1: Generalising, dealing with signs, powers and factorials A1: Correct expression			

Question			
6(a)(i)		Marks	AOs

| Question | (b)(ii) Alternative: | Marks |
| :--- | :--- | :---: | :---: |

Question 6 notes:

(a)(i)

M1: Draws a circle which passes through the origin
A1: Fully correct diagram
(a)(ii)

M 1: Uses $z=x+i y$ in the given equation and uses modulus to find equation in x and y only
A1: Correct equation in terms of x and y in any form - may be in terms of r and θ
M 1: Introduces polar form, expands and uses $\cos ^{2} \theta+\sin ^{2} \theta=1$ leading to a polar equation
A1*: Deduces the given equation (ignore any reference to $r=0$ which gives a point on the curve)
(b)(i)

B1: Correct pair of rays added to their diagram
B1ft: A rea between their pair of rays and inside their circle from (a) shaded, as long as there is an intersection
(b)(ii)

M 1: Selects an appropriate method by linking the diagram to the polar curve in (a), evidenced by use of the polar area formula
M 1: Uses double angle identities
A1: Correct integral
M 1: Integrates and applies limits
A1: Correct area
(b)(ii) Alternative:

M 1: Selects an appropriate method by finding angle ACB and area of sector ACB and finds area of triangle OCB to make progress tow ards finding the required area
A1: Correct combined area of sector ACB + triangle OCB
M 1: Starts the process of finding the area of triangle $O A C$ by calculating angle $A C O$ and attempts area of triangle OAC
M 1: Uses the addition formula to find the exact area of triangle OAC and employs a full correct method to find the area of the shaded region
A1: Correct area

Question	Scheme	Marks	AOs
7(a)	$r=10 \frac{d f}{d t}-2 f \Rightarrow \frac{d r}{d t}=10 \frac{d^{2} \mathrm{f}}{\mathrm{dt}^{2}}-2 \frac{d f}{d t}$	M 1	2.1
	$10 \frac{d^{2} f}{d t^{2}}-2 \frac{d f}{d t}=-0.2 \mathrm{f}+0.4\left(10 \frac{d f}{d t}-2 \mathrm{f}\right)$	M 1	2.1
	$\frac{d^{2} \mathrm{f}}{\mathrm{dt}^{2}}-0.6 \frac{\mathrm{df}}{\mathrm{dt}}+0.1 \mathrm{f}=0 *$	A 1*	1.1b
		(3)	
(b)	$m^{2}-0.6 m+0.1=0 \Rightarrow m=\frac{0.6 \pm \sqrt{0.6^{2}-4 \times 0.1}}{2}$	M 1	3.4
	$\mathrm{m}=0.3 \pm 0.1 \mathrm{i}$	A 1	1.1b
	$\mathrm{f}=\mathrm{e}^{\alpha t}(\mathrm{~A} \cos \beta \mathrm{t}+\mathrm{B} \sin \beta \mathrm{t})$	M 1	3.4
	$f=e^{0.3 t}(A \cos 0.1 t+B \sin 0.1 t)$	A 1	1.1b
		(4)	
(c)	$\frac{d f}{d t}=0.3 e^{0.3 t}(A \cos 0.1 t+B \sin 0.1 t)+0.1 e^{0.3 t}(B \cos 0.1 t-A \sin 0.1 t)$	M 1	3.4
	$\begin{gathered} r=10 \frac{d f}{d t}-2 f \\ =e^{0.3 t}((3 A+B) \cos 0.1 t+(3 B-A) \sin 0.1 t)-2 e^{0.3 t}(A \cos 0.1 t+B \sin 0.1 t) \end{gathered}$	M 1	3.4
	$r=e^{0.3 t}((A+B) \cos 0.1 t+(B-A) \sin 0.1 t)$	A 1	1.1b
		(3)	
(d)(i)	$t=0, f=6 \Rightarrow A=6$	M 1	3.1b
	$\mathrm{t}=0, \mathrm{r}=20 \Rightarrow \mathrm{~B}=14$	M 1	3.3
	$r=e^{0.3 t}(20 \cos 0.1 t+8 \sin 0.1 t)=0$	M 1	3.1b
	$\tan 0.1 \mathrm{t}=-2.5$	A 1	1.1b
	2019	A1	3.2a
(d)(ii)	3750 foxes	B1	3.4
(d)(iii)	e.g. the model predicts a large number of foxes are on the island when the rabbits have died out and this may not be sensible	B1	3.5a
		(7)	

(17 marks)

Question 7 notes:

(a)

M 1: A ttempts to differentiate the first equation with respect to t
M 1: Proceeds to the printed answer by substituting into the second equation
A1*: A chieves the printed answer with no errors
(b)

M 1: Uses the model to form and solve the auxiliary equation
A1: Correct values for m
M1: U ses the model to form the CF
A1: Correct CF
(c)

M 1: Differentiates the expression for the number of foxes
M 1: U ses this result to find an expression for the number of rabbits
A1: Correct equation
(d)(i)

M 1: Realises the need to use the initial conditions in the model for the number of foxes
M 1: R ealises the need to use the initial conditions in the model for the number of rabbits to find both unknown constants
M 1: $\quad 0$ btains an expression for r in terms of t and sets $=0$
A1: R earranges and obtains a correct value for tan
A1: Identifies the correct year
(d)(ii)

B1: Correct number of foxes
(d)(iii)

B1: M akes a suitable comment on the outcome of the model

